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1. INTRODUCTION

It has long been of interest to find methods for constructing nearest points
or best approximations in normed linear spaces. More precisely, if X is a
normed linear space and M is a closed convex subset, then one seeks methods
for constructing, for eachf, points g* in M such that III - g* II ~ III - gil,
for all gEM.

We are concerned here with the space CLP(T), p = 2m, 2 ~ m ~ 00,

i.e., the space of all real valued continuous functions, defined on the compact
measurable subset T of n space, endowed with the LV norm. Furthermore,
we choose M to be a finite-dimensional linear subspace. In Section 2 we
introduce a new method for constructing nearest points in case m is finite.
Using the results of Section 2, we give, in Section 3, a method for constructing
nearest points in the LOO norm. This method differs significantly from the
P61ya algorithm [1] by not requiring the £P approximations, p finite, to be
actually computed. A subsequent article will treat applications, complex
valued functions, and some subsets M, which are not linear subspaces.

Throughout the paper, we restrict ourselves to the situation where the
linear subspace M and the point I satisfy the relation

I(x) =F g(x),

We shall make use of the notation

a.e., for all gEM. (1)

[ ]

1/2

II h IIL-,w = fT h2(t) wet) dt .
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2. LP NORMS, P = 2m, 2 ~ m < 00

For such a p, and M and f satisfying (1), we construct inductively the
sequence of approximations

(go given), (2)

as follows. Given gn , then hn E M is uniquely defined by

for all gEM, (3)

where w = (f - gn)P-2. Given hn , then gn+l is uniquely defined by

gn+l = gn + An(hn - gn), (4)

where An minimizes Ilf - gn - A(hn - gn)lb over all real A. We note that (3)
is equivalent to

fT [f(t) - gn(t)]P-2[f(t) - hn(t)] g(t) dt = 0, for all gEM. (5)

Hence, hn can be found by solving a finite number of linear equations.
We also note that gn+l is found by minimizing the convex function
ep(A) = Ilf - gn - A(hn - gn)lb, -00 < A < +00.

The unique point in M which lies nearest to f in the Lp norm, p finite,
is denoted by Gp ; thus,

for all gEM.

The following theorem holds.

THEOREM 1. Let p = 2m, 2 ~ m < 00, and let f and M satisfy (1).
Then for any initial approximation go E M, the sequence (2) satisfies the
following:

1. For each n, either gn = Gp or

2. hn , gn - Gp , uniformly, as n - 00;

3. for each n, either gn = Gp or
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Proof Part 1. By construction, II! - gn+l Ib ~ II! - gn Ib . If equa-
lity holds then by differentiation we find

J (J(t) - gn(t))P-l(hn(t) - gn(t)) dt = 0.
T

Combining this with (5), we derive

By the uniqueness of hn , this implies that hn = gn' Substituting in (5),
we find

JT (J(t) - gn(t))P-lg(t) dt = 0, for all gE M,

which implies that gn = Gp ; thus, Part 1 is completed.

Part 2. It can be shown that the sequence (2) is bounded. By virtue
of this and the uniqueness of G1J , it is sufficient to show that if subsequences
{gn} and {hn } converge uniformly to g* and h*, respectively, then

k k

g* = h* = G1J' To this end, we note that from (5) and the uniform
convergence we have

JT [J(t) - g*(t)]P-2[J(t) - h*(t)] g(t) dt = 0, for all gEM. (6)

Now suppose that It! - g* - A*(h* - g*)lb < II! - g* Ib, for some A*.
Then, by uniform convergence, II! - gn - A*(hn - gn )Ib < II! - g* Ib,

k k k

for some k. By definition, II! - gn +llb ~ II! - gn - A*(hn - gn )Ib,
k k k k

and by Part 1 above, II! - g* IlL- ~ II! - gn Ib ~ II! - gn +l Ib . Thus,
k+l k

we arrive at the contradiction: II! - gn +lIb < II! - gn +llb. Hence,
k k

II! - g* IILP ~ II! - g* - A(h* - g*)lb ' for all A. (7)

By virtue of (6) and (7), we can apply the proof of Part 1 to conclude that
g* = h* = G1J' This proves Part 2.

Part 3. Ifgn =j::. G1J , then the inequality II! - hn Ib.w ~ II! - G1J Ib.w ,
where w = (f - gn)P-2, follows from the definition of hn . The second
inequality II! - G1J IIL-.w < II! - gn Ib.w follows by a direct application of
HOlder's inequality. This completes the proof.
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3. LOO NORM

Given f and M satisfying (1), we construct inductively the sequence of
approximations

(H2 given), (8)

as follows. Given H 2(m-ll , H 2m is found by constructing the finite sequence

according to (3) and (4), above, with p = 2m. The integer k(m) is chosen
so that

(9)

where w = (f - gk(m»2m-2. According to Theorem 1, such an integer exists.
We denote by Moo the set of all points in M which lie nearest to f in the
Loo norm; thus,

Moo = {Goo: Goo E M, Ilf - Goo IILoo ~ IIf - g IILoo , for all gEM}.

We now have

THEOREM 2. Let f and M satisfy (1). If Moo consists ofonly one point Goo,
then,for any initialapproximation H2 E M, the sequence (8) converges uniformly
to Goo . If Moo consists ofmore than one point, then the sequence (8) is bounded
and every convergent subsequence of it converges uniformly to some point ofMoo.

Proof From inequality (9) and Part 3 of Theorem 1, it follows that

where w = (f - gk(m»2m-2. Employing the orthogonality property (5)
of H 2m , this implies

(10)

where w = [f - gk(m)]2m-2. It is well known (P6lya [1], see also Buck [2])
that if Moo consists of only one point Goo, then G2m - Goo . By virtue of
relations (1) and (10), it is readily shown that H 2m - Goo, uniformly. If
Moo consists of more than one point, it is known that {G2m} is bounded and
every convergent subsequence of it converges to some point of Moo. Again
using relations (1) and (10), the desired properties of {H2m} follow readily.
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