Construction of Nearest Points in the L^{p}, p even, and L^{∞} norms. I^{*}

L. A. Karlovitz
Institute for Fluid Dynamics \& Applied Mathematics, University of Maryland College Park, Maryland 20742
Communicated by R. C. Buck

Received December 27, 1968

1. Introduction

It has long been of interest to find methods for constructing nearest points or best approximations in normed linear spaces. More precisely, if X is a normed linear space and M is a closed convex subset, then one seeks methods for constructing, for each f, points g^{*} in M such that $\left\|f-g^{*}\right\| \leqslant\|f-g\|$, for all $g \in M$.

We are concerned here with the space $C_{L^{p}}(T), p=2 m, 2 \leqslant m \leqslant \infty$, i.e., the space of all real valued continuous functions, defined on the compact measurable subset T of n space, endowed with the L^{p} norm. Furthermore, we choose M to be a finite-dimensional linear subspace. In Section 2 we introduce a new method for constructing nearest points in case m is finite. Using the results of Section 2, we give, in Section 3, a method for constructing nearest points in the L^{∞} norm. This method differs significantly from the Pólya algorithm [1] by not requiring the L^{p} approximations, p finite, to be actually computed. A subsequent article will treat applications, complex valued functions, and some subsets M, which are not linear subspaces.
Throughout the paper, we restrict ourselves to the situation where the linear subspace M and the point f satisfy the relation

$$
\begin{equation*}
f(x) \neq g(x), \quad \text { a.e., for all } g \in M \tag{1}
\end{equation*}
$$

We shall make use of the notation

$$
\|h\|_{L^{2}, w}=\left[\int_{T} h^{2}(t) w(t) d t\right]^{1 / 2} .
$$

[^0]2. L^{p} Norms, $p=2 m, 2 \leqslant m<\infty$

For such a p, and M and f satisfying (1), we construct inductively the sequence of approximations

$$
\begin{equation*}
g_{0}, h_{0}, g_{1}, h_{1}, \ldots, g_{n}, h_{n}, \ldots \quad\left(g_{0} \text { given }\right) \tag{2}
\end{equation*}
$$

as follows. Given g_{n}, then $h_{n} \in M$ is uniquely defined by

$$
\begin{equation*}
\left\|f-h_{n}\right\|_{L^{2}, w} \leqslant\|f-g\|_{L^{2}, w}, \quad \text { for all } g \in M, \tag{3}
\end{equation*}
$$

where $w=\left(f-g_{n}\right)^{p-2}$. Given h_{n}, then g_{n+1} is uniquely defined by

$$
\begin{equation*}
g_{n+1}=g_{n}+\lambda_{n}\left(h_{n}-g_{n}\right) \tag{4}
\end{equation*}
$$

where λ_{n} minimizes $\left\|f-g_{n}-\lambda\left(h_{n}-g_{n}\right)\right\|_{L^{p}}$ over all real λ. We note that (3) is equivalent to

$$
\begin{equation*}
\int_{T}\left[f(t)-g_{n}(t)\right]^{p-2}\left[f(t)-h_{n}(t)\right] g(t) d t=0, \quad \text { for all } g \in M \tag{5}
\end{equation*}
$$

Hence, h_{n} can be found by solving a finite number of linear equations. We also note that g_{n+1} is found by minimizing the convex function $\phi(\lambda)=\left\|f-g_{n}-\lambda\left(h_{n}-g_{n}\right)\right\|_{L^{p}},-\infty<\lambda<+\infty$.

The unique point in M which lies nearest to f in the L^{p} norm, p finite, is denoted by G_{p}; thus,

$$
\left\|f-G_{p}\right\|_{L^{p}} \leqslant\|f-g\|_{L^{p}}, \quad \text { for all } g \in M
$$

The following theorem holds.
Theorem 1. Let $p=2 m, 2 \leqslant m<\infty$, and let f and M satisfy (1). Then for any initial approximation $g_{0} \in M$, the sequence (2) satisfies the following:

1. For each n, either $g_{n}=G_{p}$ or

$$
\left\|f-g_{n+\mathbf{1}}\right\|_{L^{p}}<\left\|f-g_{n}\right\|_{L^{p}}
$$

2. $h_{n}, g_{n} \rightarrow G_{p}$, uniformly, as $n \rightarrow \infty$;
3. for each n, either $g_{n}=G_{p}$ or

$$
\left\|f-h_{n}\right\|_{L^{2}, w} \leqslant\left\|f-G_{p}\right\|_{L^{2}, w}<\left\|f-g_{n}\right\|_{L^{2}, w}
$$

where $w=\left(f-g_{n}\right)^{p-2}$.

Proof. Part 1. By construction, $\left\|f-g_{n+1}\right\|_{L^{p}} \leqslant\left\|f-g_{n}\right\|_{L^{p}}$. If equality holds then by differentiation we find

$$
\int_{T}\left(f(t)-g_{n}(t)\right)^{p-1}\left(h_{n}(t)-g_{n}(t)\right) d t=0 .
$$

Combining this with (5), we derive

$$
\int_{T}\left(f(t)-g_{n}(t)\right)^{p} d t=\int_{T}\left(f(t)-g_{n}(t)\right)^{p-2}\left(f(t)-h_{n}(t)\right)^{2} d t .
$$

By the uniqueness of h_{n}, this implies that $h_{n}=g_{n}$. Substituting in (5), we find

$$
\int_{T}\left(f(t)-g_{n}(t)\right)^{p-1} g(t) d t=0, \quad \text { for all } g \in M,
$$

which implies that $g_{n}=G_{p}$; thus, Part 1 is completed.
Part 2. It can be shown that the sequence (2) is bounded. By virtue of this and the uniqueness of G_{p}, it is sufficient to show that if subsequences $\left\{g_{n_{k}}\right\}$ and $\left\{h_{n_{k}}\right\}$ converge uniformly to g^{*} and h^{*}, respectively, then $g^{*}=h^{*}=G_{p}$. To this end, we note that from (5) and the uniform convergence we have

$$
\begin{equation*}
\int_{T}\left[f(t)-g^{*}(t)\right]^{p-2}\left[f(t)-h^{*}(t)\right] g(t) d t=0, \quad \text { for all } g \in M . \tag{6}
\end{equation*}
$$

Now suppose that $\left\|f-g^{*}-\lambda^{*}\left(h^{*}-g^{*}\right)\right\|_{L^{p}}<\left\|f-g^{*}\right\|_{L^{p}}$, for some λ^{*}. Then, by uniform convergence, $\left\|f-g_{n_{k}}-\lambda^{*}\left(h_{n_{k}}-g_{n_{k}}\right)\right\|_{L^{D}}<\left\|f-g^{*}\right\|_{L^{p}}$, for some k. By definition, $\left\|f-g_{n_{k}+1}\right\|_{L^{p}} \leqslant\left\|f-g_{n_{k}}-\lambda^{*}\left(h_{n_{k}}-g_{n_{k}}\right)\right\|_{L^{p}}$, and by Part 1 above, $\left\|f-g^{*}\right\|_{L^{p}} \leqslant\left\|f-g_{n_{k+1}}\right\|_{L^{p}} \leqslant\left\|f-g_{n_{k}+1}\right\|_{L^{p}}$. Thus, we arrive at the contradiction: $\left\|f-g_{n_{k}+1}\right\|_{L^{p}}<\left\|f-g_{n_{k}+1}\right\|_{L^{p}}$. Hence,

$$
\begin{equation*}
\left\|f-g^{*}\right\|_{L^{p}} \leqslant\left\|f-g^{*}-\lambda\left(h^{*}-g^{*}\right)\right\|_{L^{p}}, \quad \text { for all } \lambda \tag{7}
\end{equation*}
$$

By virtue of (6) and (7), we can apply the proof of Part 1 to conclude that $g^{*}=h^{*}=G_{p}$. This proves Part 2.

Part 3. If $g_{n} \neq G_{p}$, then the inequality $\left\|f-h_{n}\right\|_{L^{2}, w} \leqslant\left\|f-G_{p}\right\|_{L^{2}, w}$, where $w=\left(f-g_{n}\right)^{p-2}$, follows from the definition of h_{n}. The second inequality $\left\|f-G_{\boldsymbol{p}}\right\|_{L^{2}, w}<\left\|f-g_{n}\right\|_{L^{2}, w}$ follows by a direct application of Hölder's inequality. This completes the proof.

3. L^{∞} NORM

Given f and M satisfying (1), we construct inductively the sequence of approximations

$$
\begin{equation*}
H_{2}, H_{4}, \ldots, H_{2 m}, \ldots \quad \text { (} H_{2} \text { given) } \tag{8}
\end{equation*}
$$

as follows. Given $H_{2(m-1)}, H_{2 m}$ is found by constructing the finite sequence

$$
H_{2(m-1)}=g_{0}, h_{0}, \ldots, g_{n}, h_{n}, \ldots, g_{k(m)}, h_{k(m)}=H_{2 m}
$$

according to (3) and (4), above, with $p=2 m$. The integer $k(m)$ is chosen so that

$$
\begin{equation*}
\left\|f-g_{k(m)}\right\|_{L^{2}, w}^{2}-\left\|f-h_{k(m)}\right\|_{L^{2}, w}^{2} \leqslant 1 / 2^{m^{2}}, \tag{9}
\end{equation*}
$$

where $w=\left(f-g_{k(m)}\right)^{2 m-2}$. According to Theorem 1, such an integer exists. We denote by M_{∞} the set of all points in M which lie nearest to f in the L^{∞} norm; thus,

$$
M_{\infty}=\left\{G_{\infty}: G_{\infty} \in M,\left\|f-G_{\infty}\right\|_{L^{\infty}} \leqslant\|f-g\|_{L^{\infty}}, \text { for all } g \in M\right\} .
$$

We now have
Theorem 2. Let f and M satisfy (1). If M_{∞} consists of only one point G_{∞}, then, for any initial approximation $H_{2} \in M$, the sequence (8) converges uniformly to G_{∞}. If M_{∞} consists of more than one point, then the sequence (8) is bounded and every convergent subsequence of it converges uniformly to some point of M_{∞}.

Proof. From inequality (9) and Part 3 of Theorem 1, it follows that

$$
\left\|f-G_{2 m}\right\|_{L^{2}, w}^{2}-\left\|f-H_{2 m}\right\|_{L^{2}, w}^{2} \leqslant 1 / 2^{m^{2}}
$$

where $w=\left(f-g_{k(m)}\right)^{2 m-2}$. Employing the orthogonality property (5) of $H_{2 m}$, this implies

$$
\begin{equation*}
\left\|H_{2 m}-G_{2 m}\right\|_{L^{2}, w}^{2} \leqslant 1 / 2^{m^{2}} \tag{10}
\end{equation*}
$$

where $w=\left[f-g_{k(m)}\right]^{2 m-2}$. It is well known (Pólya [1], see also Buck [2]) that if M_{∞} consists of only one point G_{∞}, then $G_{2 m} \rightarrow G_{\infty}$. By virtue of relations (1) and (10), it is readily shown that $H_{2 m} \rightarrow G_{\infty}$, uniformly. If M_{∞} consists of more than one point, it is known that $\left\{G_{2 m}\right\}$ is bounded and every convergent subsequence of it converges to some point of M_{∞}. Again using relations (1) and (10), the desired properties of $\left\{H_{2 m}\right\}$ follow readily.

References

1. G. Pólya, "Sur un algorithme toujours convergent pour obtenir les polynomes de meilleure approximation de Tchebycheff pour une fonction continue quelconque," Compt. Rend. 157 (1913), 480-483.
2. R. C. Buck, "Linear Spaces and Approximation Theory," "On Numerical Approximation," Univ. of Wisconsin Press, 1959.

[^0]: * This research was supported, in part, by Atomic Energy Commission Grant AEC AT(40-1)3443.

